NTD in AI: Recurrent Neural Network (RNN)
Non-technical definitions in AI
A plain vanilla/classical neural network can only accept fixed-sized (vector) inputs, such as a 15 x 15 pixel image, and produce a fixed-sized vector at the output. A Recurrent Neural Network is one that can take varying size inputs.
It is used in natural language processing (NLP) where the sequence of words in a sentence is input as a feature vector (or a matrix of feature vectors). The RNN then outputs a class for each feature vector, or classifies the entire output sequence itself.
The word “Recurrent” is used because that is a mathematical term for anything that requires sequences as an input.
Machine learning is a technical subject and the use of technical terms by engineers have the potential of coming between clear communication with non-engineers, especially in the business setting. In spare moments I started to put together simple, non-technical definitions of nouns and verbs used in the field of machine learning as a kind of Rosetta Stone for non-engineers.This is a work-in-progress which I may collect into a book one day. This is one of those definitions.
Other non-technical definitions:
- NTD in AI: 1 of K Encoding
 - NTD in AI: Activation Function
 - NTD in AI: Active Learning
 - NTD in AI: Accuracy
 - NTD in AI: Autoencoder
 - NTD in AI: Backward Stepwise Selection
 - NTD in AI: Bagging
 - NTD in AI: Batch Normalization
 - NTD in AI: Bayesian Hyperparameter Optimization
 - NTD in AI: BERT
 - NTD in AI: Best Subset Selection
 - NTD in AI: Bias
 - NTD in AI: Clustering
 - NTD in AI: Collaborative Filtering
 - NTD in AI: Confusion Set Disambiguation
 - NTD in AI: Convolution Neural Network
 - NTD in AI: Cosine Similarity
 - NTD in AI: Cost-Sensitive Accuracy
 - NTD in AI: Cloze Test
 - NTD in AI: Credit Assignment Problem
 - NTD in AI: Data Augmentation
 - NTD in AI: Data Imputation
 - NTD in AI: Dataset
 - NTD in AI: DBSCAN
 - NTD in AI: Decision Boundary
 - NTD in AI: Decoder
 - NTD in AI: Deep Learning
 - NTD in AI: Denoising Autoencoder
 - NTD in AI: Density Estimation
 - NTD in AI: Domain Expert
 - NTD in AI: Dropout
 - NTD in AI: Early Stopping
 - NTD in AI: Embedding
 - NTD in AI: Encoder
 - NTD in AI: Ensemble Learning
 - NTD in AI: Expected Test MSE
 - NTD in AI: Exploding Gradient
 - NTD in AI: Feature
 - NTD in AI: Feature Selection
 - NTD in AI: Feed Forward Neural Network
 - NTD in AI: Filter (Matrix)
 - NTD in AI: Forward Propagation
 - NTD in AI: Forward Stepwise Selection
 - NTD in AI: Fully Connected Neural Network Layers
 - NTD in AI: Fully Visible Belief Network
 - NTD in AI: Fuzzy Set
 - NTD in AI: Gated Recurrent Neural Network
 - NTD in AI: Gaussian Kernel Regression
 - NTD in AI: Gaussian Mixture Model
 - NTD in AI: Generalize
 - NTD in AI: Gradient
 - NTD in AI: Gradient Boosting
 - NTD in AI: Gradient Descent
 - NTD in AI: Grid Search
 - NTD in AI: Ground Truth
 - NTD in AI: Hidden Layers
 - NTD in AI: Hyperbolic Tangent (tanH)
 - NTD in AI: Hyperparameter
 - NTD in AI: Input Vectors
 - NTD in AI: Intrinsic Motivation
 - NTD in AI: Irreducible Errors
 - NTD in AI: k-Means
 - NTD in AI: Kernel (Trick)
 - NTD in AI: Kernel Regression
 - NTD in AI: Label/Labeled Examples
 - NTD in AI: LambdaMART
 - NTD in AI: Linear Models
 - NTD in AI: Logistic Regression (Softmax)
 - NTD in AI: Long Short Term Memory (LSTM)
 - NTD in AI: Meta-Model
 - NTD in AI: Manhattan Taxicab Norm
 - NTD in AI: MNIST
 - NTD in AI: Model Cards
 - NTD in AI: Moment Matching
 - NTD in AI: MP Neuron
 - NTD in AI: Multi-Label Classification
 - NTD in AI: Multi-Layer Perceptron
 - NTD in AI: Munging
 - NTD in AI: NADE
 - NTD in AI: Non-Parametric Methods
 - NTD in AI: Norm
 - NTD in AI: Observation
 - NTD in AI: One Class Classification
 - NTD in AI: One-Hot Encoding
 - NTD in AI: One Shot Learning
 - NTD in AI: One Versus Rest
 - NTD in AI: Oracle
 - NTD in AI: Overfitting
 - NTD in AI: Oversampling
 - NTD in AI: Padding
 - NTD in AI: Perceptron
 - NTD in AI: Pooling
 - NTD in AI: Prediction Strength
 - NTD in AI: Predictors
 - NTD in AI: Preprocessing
 - NTD in AI: Principal Component Analysis (PCA)
 - NTD in AI: Random Search
 - NTD in AI: ReLU
 - NTD in AI: Recurrent Neural Network (RNN)
 - NTD in AI: ROC Curve
 - NTD in AI: Semi-Supervised Learning
 - NTD in AI: Sequence Labeling
 - NTD in AI: Siamese Neural Network
 - NTD in AI: SMOTE - Synthetic Minority Oversampling Technique
 - NTD in AI: Softmax
 - NTD in AI: Softplus
 - NTD in AI: Stepwise Selection
 - NTD in AI: Stride
 - NTD in AI: Subset Selection
 - NTD in AI: Supervised Learning
 - NTD in AI: t-SNE
 - NTD in AI: Target Vectors
 - NTD in AI: Training Instance
 - NTD in AI: Training Set
 - NTD in AI: Triplet Loss Function
 - NTD in AI: UMAP - Unifold Manifold Approximation and Projection
 - NTD in AI: Unary Classification
 - NTD in AI: Validation Set
 - NTD in AI: Vanishing Gradient
 - NTD in AI: Variational Autoencoder
 - NTD in AI: Volume (Convolution)
 - NTD in AI: Voting
 - NTD in AI: WaveNet
 - NTD in AI: Weak Learners
 - NTD in AI: Word Embeddings
 - NTD in AI: word2vec